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LETTER TO THE EDITOR

R-matrices and generalized inverses

H W Braden†
Department of Mathematics and Statistics, The University of Edinburgh, Edinburgh, UK

Received 3 June 1997

Abstract. Four results are given that address the existence, ambiguities and construction of a
classicalR-matrix given a Lax pair. They enable the uniform construction ofR-matrices in terms
of any generalized inverse of adL. For genericL a generalized inverse (and indeed the Moore–
Penrose inverse) is explicitly constructed. TheR-matrices are, in general, momentum dependent
and dynamical. The construction applies equally to Lax matrices with spectral parameter.

1. Introduction

The modern approach to completely integrable systems is in terms of Lax pairsL, M andR-
matrices. Here the consistency of the matrix equationL̇ = [L,M] expresses the equations
of motion of the system under consideration. The great merit of this approach is that it
provides a unified framework for treating the many disparate completely integrable systems
known. Given a 2n-dimensional phase space, Liouville’s theorem [1, 12], which ensures
the existence of action-angle variables, requires that we haven independent conserved
quantities in involution; that is, they mutually Poisson commute. As a consequence of the
Lax equation the traces TrLk are conserved and these are natural candidates for the action
variables of Liouville’s theorem. (In practice the action variables are typically transcendental
functions of these traces.) It remains, however, to verify that these traces provide enough
independent quantities in involution. Verifying the number of independent quantities is
usually straightforward and the remaining step is then to show they mutually Poisson
commute. The final ingredient of the modern approach, theR-matrix [15], guarantees their
involution. If L is in a representationE of a Lie algebrag (here taken to be semi-simple),
the classicalR-matrix is aE ⊗ E valued matrix such that

[R,L⊗ 1]− [RT, 1⊗ L] = {L ⊗, L}. (1)

(The notation is amplified below.) Then

{TrE L
k,TrE L

m} = TrE⊗E{Lk ⊗, Lm} = km TrE⊗E Lk−1⊗ Lm−1{L ⊗, L} = 0

which vanishes due to the cyclicity of the trace. By a result of Babelon and Viallet [4], such
anR-matrix is guaranteed to exist if the eigenvalues ofL are in involution. The Liouville
integrability of a system represented by a Lax pair has been reduced then to finding any
solution to (1) and counting the number of independent traces. Further, theR-matrix is an
essential ingredient when examining the separation of variables of such integrable systems
[11, 16].
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Unfortunately the construction ofR-matrices has hitherto been somewhat of an arcane
art and many have been obtained in a case by case manner [3]. The purpose of this letter
is to present four results that address the existence and construction of solutions of (1) and
hence the Liouville integrability of the system under consideration. They yield a uniform
construction ofR-matrices. In fact theR-matrices satisfying (1) are by no means unique and
our construction characterizes this ambiguity. The approach applies equally toR-matrices
with spectral parameter. We will illustrate these results with a simple example. At the
outset we remark that theR-matrix solutions to (1) are generically momentum dependent.
Within this family of solutions some may be particularly simple: they may, for example,
be constant (as in the Toda system [9]) or momentum independent. We are content here
with providing the construction of anR-matrix given a Lax matrixL and so answering
the question of Liouville integrability: we do not seek to further specify the momentum
or position dependence of the solution. For the elliptic Calogero–Moser model there are
in fact [6] no R-matrices that are independent of both momentum and spectral parameter
(for more than four particles) and this illustrates the fact that simple assumptions on the
parameter dependence of anR-matrix need not be natural. Elsewhere we will apply these
results to the elliptic Calogero–Moser models without spectral parameter.

Our approach is as follows. First, we rewrite (1) in the form of the matrix equation

ATX −XTA = B. (2)

HereA is built out of L and the Lie algebra, the unknown matrixX being solved for is
essentially theR-matrix in a given basis andB represents the right-hand side of (1). Our
first result is to give necessary and sufficient conditions for (2) to admit solutions together
with its general solution. This general solution encodes the possible ambiguities of theR-
matrix. BecauseA is (in general) singular our solution is in terms of a generalized inverse
G satisfying

AGA = A and GAG = G. (3)

Such a generalized inverse always exists. (Accounts of generalized inverses may be found
in [5, 8, 13, 14].) Indeed the Moore–Penrose inverse—which is unique and always exists—
further satisfies(AG)† = AG, (GA)† = GA. Observe that given aG satisfying (3) we
have at hand projection operatorsP1 = GA andP2 = AG which satisfy

AP1 = P2A = A P1G = GP2 = G. (4)

Our second result shows that the choice of generalized inverseG only alters theR-matrix
within the ambiguities specified by the general solution, and so any generalized inverse
suffices to solve (2) and hence construct anR-matrix. At this stage we have reduced the
problem of constructing anR-matrix to that of constructing a generalized inverseG and
our third result constructs such for a generic elementL of g. Because the Moore–Penrose
inverse is unique, our fourth result is to present this inverse for genericL though we shall
not need to use this in our application.

This letter is organized as follows. In the next section we present the four results. The
proofs of the first two are somewhat lengthy and algebraic and will be presented elsewhere
[7]; the proofs of the remaining two are easier to outline. In section 3 we apply these to
give theR-matrix for genericL. In section 4 we extend the results to include a spectral
parameter. Section 5 is an illustrative example. We conclude with a brief discussion.
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2. Four results

Our first task is to identify (1) with (2). LetTµ denote a basis for the (finite-dimensional)
Lie algebrag with [Tµ, Tν ] = cλµν Tλ defining the structure constants ofg. Setφ(Tµ) = Xµ,
whereφ yields the representationE of the Lie algebrag; we may take this to be a faithful
representation. WithL =∑µ L

µXµ the left-hand side of (1) becomes

{L ⊗, L} =
∑
µ,ν

{Lµ,Lν}Xµ ⊗Xν

while upon settingR = RµνXµ ⊗Xν andRT = RνµXµ ⊗Xν the right-hand side yields

[R,L⊗ 1]− [RT, 1⊗ L] = Rµν([Xµ,L] ⊗Xν −Xν ⊗ [Xµ,L])
= RµνLλ([Xµ,Xλ] ⊗Xν −Xν ⊗ [Xµ,Xλ])
= (RτνcµτλLλ − RτµcντλLλ)Xµ ⊗Xν.

By identifying Aµν = cνµλLλ ≡ −adLνµ, Bµν = {Lµ,Lν} andXµν = Rµν we see that (1)
is an example of (2).

Having shown how to identify (1) with the matrix equation (2) we may now state our
first result.

Result 1. The matrix equation (2) has solutions if and only if

(C1) BT = −B
(C2) (1− P T

1 )B(1− P1) = 0

in which case the general solution is

X = 1
2G

TBP1+GTB(1− P1)+ (1− P T
2 )Y + (P T

2 ZP2)A (5)

whereY is arbitrary andZ is only constrained by the requirement thatP T
2 ZP2 be symmetric.

Although the general solution appears to depend on the generalized inverseG we in fact
find:

Result 2. If Ḡ is any other solution of (3) with attendant projection operatorsP̄1,2 then
(5) may also be written

X = 1
2Ḡ

TBP̄1+ ḠTB(1− P̄1)+ (1− P̄ T
2 )Ȳ + P̄ T

2 Z̄P̄2A

where

Ȳ = (1− P T
2 )Y + P T

2 ZP2A+GTB(1− 1
2P1) Z̄ = Z + 1

2(G
TBḠ− ḠTBG).

Thus Z̄ is again symmetric and we have a solution of the form (5).
In the R-matrix context the matrixB is manifestly antisymmetric because of the

antisymmetry of the Poisson bracket and so (C1) is clearly satisfied. We have thus reduced
the existence of anR-matrix to the single consistency equation (C2) and the construction of
a generalized inverse to adL. We turn now to the construction of the generalized inverse.

Let Xµ denote a Cartan-Weyl basis for the Lie algebrag. That is {Xµ} = {Hi,Eα},
where {Hi} is a basis for the Cartan subalgebrah and {Eα} is the set of step operators
(labelled by the root system8 of g). The structure constants are found from

[Hi,Eα] = αiEα [Eα,E−α] = α∨ ·H and
[Eα,Eβ ] = Nα,βEα+β if α + β ∈ 8.
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HereNα,β = cα+βα β . With these definitions we then have that

adL =
( j

↓
β

↓
i → 0 −β∨i L−β
α→ −αjLα 3α

β

)
=
(

0 uT

v 3

)
(6)

where we index the rows and columns first by the Cartan subalgebra basis{i, j : 1 . . . rankg}
then the root system{α, β ∈ 8}. We will use this block decomposition of matrices
throughout. Hereu andv are |8| × rankg matrices and we have introduced the|8| × |8|
matrix

3α
β = α · Lδαβ + cαα−ββ Lα−β (7)

whereα · L =∑rankg

i=1 αiL
i . With these definitions we have:

Result 3. For genericL the matrix3 is invertible and a generalized inverse of adL is
given by (

1 0
−3−1v 1

)(
0 0
0 3−1

)(
1 −uT3−1

0 1

)
=
(

0 0
0 3−1

)
. (8)

We establish the result by first showing that for genericL

adL =
(

1 uT3−1

0 1

)(
0 0
0 3

)(
1 0

3−1v 1

)
. (9)

It then follows that (8) is a generalized inverse for adL by direct multiplication.
Now for any matricesm and3 we have the general factorization [5, 10](

m uT

v 3

)
=
(

1 uT4

0 1

)(
m− uT4v uT(1−43)
(1−34)v 3

)(
1 0
4v 1

)
where4 is a generalized inverse of3. In particular, whenm = 0 and3 is invertible (and
so4 = 3−1) this shows that(

0 uT

v 3

)
=
(

1 uT3−1

0 1

)(−uT3−1v 0
0 3

)(
1 0

3−1v 1

)
. (10)

Thus (9) and hence the result follow by establishing that3 is generically invertible and that

uT3−1v = 0. (11)

From (7) we see that3 is the perturbation of a diagonal matrix and so is generically
invertible: the zero locus det3 = 0 is a polynomial in the coefficients of adL and so the
complement of this set is dense and open. For such an invertible3 we thus have

rank3 = dim3 = dimg− rankg. (12)

Now the maximum rank† of the matrix adL is dimg− rankg [17]. From (10) we see that
rank3 + rank(uT3−1v) = rank adL 6 dimg − rankg and so from (12) we deduce that
rank3 = rank adL. Therefore, rank(uT3−1v) = 0 and consequently (11) must hold. The
result then follows.

An alternate factorization of adL is possible for the genericL under consideration.
Utilizing (11) we find that

adL =
(
uT3−1

1

)
3(3−1v 1) = E3F.

Employing a result of MacDuffee (see [5]) this full rank factorization then yields:

† If det(t − adL) = ∑dimg
j=0 pj (L) t

j is the characteristic polynomial of adL, the regular semi-simple elements
of a semi-simple Lie algebrag are those elements for whichprankg(L) 6= 0. These elements are also of rank
dimg− rankg and form an open dense set ing, but this condition is different from det3 6= 0.
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Result 4. For genericL the Moore–Penrose inverse of adL is given by

F †(F F †)−13−1(E† E)−1E†

where

E =
(
uT3−1

1

)
and F = (3−1v 1) .

3. TheR-matrix

We now bring together the results of the previous section to present theR-matrix for a
genericL when this exists. From the fact thatA = −(adL)T a generalized inverse ofA is
given by minus the transpose of the generalized inverse (8). Utilizing our earlier notation
this means that we have the projectors

P1 =
(

0 0
3−1Tu 1

)
P2 =

(
0 vT3−1T

0 1

)
.

Let us express the Poisson brackets of the entries ofL in the same block form in the
Cartan–Weyl basis:

B =
(
ζ −µT

µ φ

)
= −BT

whereBαj = {Lα,Lj } = µαj and so on. The constraint (C1) is manifestly satisfied.
The constraint (C2) is now (the rankg× rankg matrix equation)

(C2) 0= ζ + µT3−1Tu− uT3−1µ+ uT3−1φ 3−1Tu. (13)

Each term in this equation is known and so the equality may be readily checked.
Supposing the constraint (C2) is satisfied we then find from (5) that the generalR-matrix

takes the form

R =
(

0 0
−3−1µ+ 1

23
−1φ3−1Tu − 1

23
−1φ

)
+
(

p q

−3−1vp − Fu −3−1vq − F3T

)
.

(14)

The second term characterizes the ambiguity inR where we have parametrized the matrices
Y andZ in (5) by

Y =
(
p q

r s

)
and Z =

(
a b

c d

)
.

Here the matricesp andq are arbitrary while the entries ofZ are such that

F = 3−1vavT3−1T+ d +3−1vb + cvT3−1T (15)

is symmetric.

4. Inclusion of spectral parameter

For simplicity we have presented our construction for Lax pairs with no spectral parameter
but it is straightforward to incorporate such a parameter. The relevant equation to be solved
for is now

{L(u) ⊗, L(v)} = [R(u, v), L(u)⊗ 1]− [Rπ(u, v),1⊗ L(v)] (16)
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where if R(u, v) = Rµν(u, v)Xµ ⊗ Xν then Rπ(u, v) is defined by† Rπ(u, v) =
Rνµ(v, u)Xµ ⊗Xν . Now

Bµν(u, v) = {Lµ(u), Lν(v)} = −Bνµ(v, u)
and becauseL(u) depends onu alone the generalized inverse now also depends on the
spectral parameter asG = G(u). The equation we now wish to solve is

AT(u)X(u, v)−Xπ(u, v)A(v) = AT(u)X(u, v)−XT(v, u)A(v) = B(u, v)
and this has the analogous solution

X(u, v) = 1
2G

T(u)B(u, v)P1(v)+GT(u)B(u, v)(1− P1(v))+ (1− P T
2 (u))Y (u, v)

+(P T
2 (u)Z(u, v)P2(v))A(v)

if and only if

(C1′) Bπ = −B
(C2′) (1− P T

1 (u))B(u, v)(1− P1(v)) = 0.

HereY (u, v) is arbitrary while the symmetry condition now becomes

(P T
2 (u)Z(u, v)P2(v))

π = P T
2 (u)Z(u, v)P2(v).

As in the spectral parameter independent case, this reduces to the requirement that

F(u, v) = 3−1(u)v(u)a(u, v)vT(v)3−1T(v)+ d(u, v)+3−1(u)v(u)b(u, v)

+c(u, v)vT(v)3−1T(v) (17)

be such thatFπ = F .

5. An example

We conclude with the simple but illustrative example of the harmonic oscillator presented
as the Lax pair (with spectral parameter)

L(u) =
(

ipx/u (p2/u)+ 1
(x2/u)+ 1 −ipx/u

)
M(u) =

(
0 i
i 0

)
. (18)

The consistency of the Lax equatioṅL(u) = [L(u),M(u)] follows from the equations of
motion of the HamiltonianH = (p2+ x2+ u)/2= −(u/2) detL(u).

Although we could equally work with the simple algebrasu(2) in this example we will
take the algebra to begl(2). Now for anyl ∈ gl(2),

l =
(
a b

c d

)
= aH1+ bE12+ cE21+ dH2

we find that in our Cartan–Weyl basis

adl =


0 0 −c b

0 0 c −b
−b b a − d 0
c −c 0 d − a

 .
Then

u =
(−c c

b −b
)

v =
(−b b

c −c
)

3 =
(
a − d 0

0 d − a
)

† We useπ to denote both matrix transposition together with the interchange ofu andv while T denotes ordinary
matrix transposition.
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andl is generic† provideda−d 6= 0. We note that in the Cartan–Weyl basis the permutation
operatorP = ∑i Hi ⊗ Hi +

∑
α∈8 Eα ⊗ E−α (which is such thatP(X ⊗ Y )P = Y ⊗ X)

takes the form

P =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (19)

Now for the case at handb = (p2/u)+ 1, c = (x2/u)+ 1, a = −d = ipx/u andL is
generic forpx 6= 0. We may, therefore, use the expressions computed in sections 3 and 4.
We calculate (using{p, x} = 1) that

B(u, v) = 1

uv


0 0 −2ip2 2ix2

0 0 2ip2 −2ix2

2ip2 −2ip2 0 4xp
−2ix2 2ix2 −4xp 0

 = ( 0 −µT(u, v)

µ(u, v) φ(u, v)

)
.

and straightforwardly verify that condition (C2′) is satisfied. TheR-matrix is then given by

R(u, v) =
(

0 0
−3−1(u)µ(u, v)+ 1

23
−1(u)φ(u, v)3−1T(u)u(v) − 1

23
−1(u)φ(u, v)

)
+
(

p(u, v) q(u, v)

−3−1(u)v(u)p(u, v)− F(u, v)u(v) −3−1(u)v(u)q(u, v)− F(u, v)3T(v)

)
.

The second term again characterizes the ambiguity inR and we have parametrized the
matricesY (u, v) andZ(u, v) in an analogous way to the spectral parameter independent
case of section 3. Substitution of the various quantities gives for the first term

R(u, v) =



0 0 0 0

0 0 0 0
−p2+ v

2pxv
−−p

2+ v
2pxv

0
i

v

−x2+ v
2pxv

−−x
2+ v

2pxv

i

v
0

 .

This R-matrix is clearly dynamical. Making use of the the block structure of theR-matrix
we see that by choosing

p(u, v) = −2i

u− v
(

1 0
0 1

)
q(u, v) = 0 and F(u, v) = −u+ v

u− v
1

2px

(
0 1
−1 0

)
we arrive at the non-dynamical

R(u, v) = −2i

u− v P
whereP is given by (19).

6. Discussion

We have presented a uniform construction for a classicalR-matrix given a Lax pair, thus
answering the question of the Liouville integrability of the system in terms of the invariants
of the matrixL. The method not only gives necessary and sufficient conditions for the
R-matrix to exist and describes its ambiguities, but is algorithmic as well. GivenL, first

† It is regular semi-simple provided(a − d)2 + bc 6= 0.
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construct adL. Next construct any generalized inverse to adL and verify (C2); this is the
necessary and sufficient condition for anR-matrix to exist: it is given explicitly by (5).
Furthermore, we have given a generalized inverse for genericL in (8); genericity is easily
checked by evaluating det3 6= 0, where3 is the restriction of adL to the root space (given
by (7)). The ambiguities in theR-matrix have been specified. We remark, that the block
nature of theR-matrix allows us to easily verify the putative ansatz for a givenR-matrix.

Thus far our discussion has been limited to linearR-matrices and we briefly discuss the
application to quadraticr-matrices, i.e. the solutions to

{L ⊗, L} = [r, L⊗ L] = [rA, L⊗ L] (20)

whererA = (r−rT)/2. (It follows from the antisymmetry of{, } that [r+rT, L⊗L] = 0.) As
discussed in [4], the quadraticR-matrix calculation may be reduced to the linearR-matrix
situation. In particular theR-matrix

R = 1
2r
µν

A L
λ(Xµ ⊗XνXλ +Xµ ⊗XλXν) (21)

that satisfies (1) yields a solutionrA of (20); the general solution is then built fromrA
and the centralizer ofL ⊗ L. Our theorem has given us the left-hand side of (21) and
a quadraticr-matrix is then given by solving the linear equationRµσ = r

µν

A F
σ
ν where

Fσν = (F σνλ + Fσλν)Lλ/2 andXνXλ = FσνλXσ . Whereas the linearR-matrix involves only
Lie algebraic data, the quadraticr-matrix may involve the group structure through the
multiplicationXνXλ = FσνλXσ . Nonetheless, the quadraticr-matrix has been reduced to a
linear equation amenable to direct solution.

Finally, we mention that for systems obtained by Hamiltonian reduction an alternative
geometric construction of classicalR-matrices exists [2] in terms of Dirac brackets. This
suggests there is a correspondence between Dirac brackets and generalized inverses. This
is indeed the case and I will present this elsewhere.

This material was presented at the CRM ‘Workshop on Calogero-Moser-Sutherland Models’
(Montreal, March 1997) and I thank the organisers and participants for such a stimulating
meeting. I have benefited from comments by J Avan, J Harnad,A N W Hone, I Krichever,
V Kuznetsov, M Olshanetsky and E Sklyanin.
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