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LETTER TO THE EDITOR

R-matrices and generalized inverses

H W Brader}
Department of Mathematics and Statistics, The University of Edinburgh, Edinburgh, UK

Received 3 June 1997

Abstract. Four results are given that address the existence, ambiguities and construction of a
classicalR-matrix given a Lax pair. They enable the uniform constructio®ehatrices in terms

of any generalized inverse of &d For genericL a generalized inverse (and indeed the Moore—
Penrose inverse) is explicitly constructed. Thenatrices are, in general, momentum dependent
and dynamical. The construction applies equally to Lax matrices with spectral parameter.

1. Introduction

The modern approach to completely integrable systems is in terms of Lax/pdifsand R-
matrices. Here the consistency of the matrix equafios [L, M] expresses the equations

of motion of the system under consideration. The great merit of this approach is that it
provides a unified framework for treating the many disparate completely integrable systems
known. Given a #-dimensional phase space, Liouville’'s theorem [1, 12], which ensures
the existence of action-angle variables, requires that we hairelependent conserved
guantities in involution; that is, they mutually Poisson commute. As a consequence of the
Lax equation the traces T+ are conserved and these are natural candidates for the action
variables of Liouville's theorem. (In practice the action variables are typically transcendental
functions of these traces.) It remains, however, to verify that these traces provide enough
independent quantities in involution. Verifying the number of independent quantities is
usually straightforward and the remaining step is then to show they mutually Poisson
commute. The final ingredient of the modern approach,Rbmeatrix [15], guarantees their
involution. If L is in a representatiof’ of a Lie algebrag (here taken to be semi-simple),

the classicalR-matrix is aE ® E valued matrix such that

[R.L®1—[R",1® L] ={L®L). (1)
(The notation is amplified below.) Then
(Trg LF, Tre L™} = Trpep{LF @ L™y = km Trgge L1 L HL O L} =0

which vanishes due to the cyclicity of the trace. By a result of Babelon and Viallet [4], such
an R-matrix is guaranteed to exist if the eigenvalues.oére in involution. The Liouville
integrability of a system represented by a Lax pair has been reduced then to finding any
solution to (1) and counting the number of independent traces. FurtheR-thatrix is an
essential ingredient when examining the separation of variables of such integrable systems
[11, 18].
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Unfortunately the construction a?-matrices has hitherto been somewhat of an arcane
art and many have been obtained in a case by case manner [3]. The purpose of this letter
is to present four results that address the existence and construction of solutions of (1) and
hence the Liouville integrability of the system under consideration. They yield a uniform
construction ofR-matrices. In fact th&-matrices satisfying (1) are by no means unique and
our construction characterizes this ambiguity. The approach applies equathiymatrices
with spectral parameter. We will illustrate these results with a simple example. At the
outset we remark that thB-matrix solutions to (1) are generically momentum dependent.
Within this family of solutions some may be particularly simple: they may, for example,
be constant (as in the Toda system [9]) or momentum independent. We are content here
with providing the construction of a®R-matrix given a Lax matrix, and so answering
the question of Liouville integrability: we do not seek to further specify the momentum
or position dependence of the solution. For the elliptic Calogero—Moser model there are
in fact [6] no R-matrices that are independent of both momentum and spectral parameter
(for more than four particles) and this illustrates the fact that simple assumptions on the
parameter dependence of &matrix need not be natural. Elsewhere we will apply these
results to the elliptic Calogero—Moser models without spectral parameter.

Our approach is as follows. First, we rewrite (1) in the form of the matrix equation

ATX — XTA=B. (2)

Here A is built out of L and the Lie algebra, the unknown matti being solved for is
essentially theR-matrix in a given basis an@ represents the right-hand side of (1). Our
first result is to give necessary and sufficient conditions for (2) to admit solutions together
with its general solution. This general solution encodes the possible ambiguities Bf the
matrix. Becaused is (in general) singular our solution is in terms of a generalized inverse
G satisfying

AGA = A and  GAG=G. (3)

Such a generalized inverse always exists. (Accounts of generalized inverses may be found
in [5, 8, 13,14].) Indeed the Moore—Penrose inverse—which is unique and always exists—
further satisfieSAG)! = AG, (GA)' = GA. Observe that given & satisfying (3) we

have at hand projection operataPs = GA and P, = AG which satisfy

APL=PA=A PIG=GP,=0G. 4)

Our second result shows that the choice of generalized invgrgely alters theR-matrix

within the ambiguities specified by the general solution, and so any generalized inverse
suffices to solve (2) and hence construct Rsmatrix. At this stage we have reduced the
problem of constructing a®-matrix to that of constructing a generalized inveseand

our third result constructs such for a generic elemerntf g. Because the Moore—Penrose
inverse is unique, our fourth result is to present this inverse for geetimugh we shall

not need to use this in our application.

This letter is organized as follows. In the next section we present the four results. The
proofs of the first two are somewhat lengthy and algebraic and will be presented elsewhere
[7]; the proofs of the remaining two are easier to outline. In section 3 we apply these to
give the R-matrix for genericL. In section 4 we extend the results to include a spectral
parameter. Section 5 is an illustrative example. We conclude with a brief discussion.
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2. Four results

Our first task is to identify (1) with (2). Lef,, denote a basis for the (finite-dimensional)
Lie algebrag with [T}, T,] = cﬁv T, defining the structure constantsgf Set¢(7,,) = X,
where¢ yields the representatiofi of the Lie algebragy; we may take this to be a faithful
representation. With, = ZM L*X, the left-hand side of (1) becomes

(LY LY=) (L' L'}X, ® X,

Ry
while upon setting? = R*’X, ® X, andR" = R"X, ® X, the right-hand side yields
[R,L®1]— [RT, 19 L] =R"(X,, L1 ® X, — X, ® [Xu, L]
= R™LM[X,, X3]1 ® X, — X, ® [ X0, Xo])
= (R™c!, L* — R™c!, LM X, ® X,.
By identifying A* = chU = —adl;, B"" = {L*, L"} and XV = R"" we see that (1)
is an example of (2).

Having shown how to identify (1) with the matrix equation (2) we may now state our
first result.

Result 1. The matrix equation (2) has solutions if and only if

(C1 B'=-B
(C2 (1-P))B(1—-P) =0

in which case the general solution is
X=3G"BPL+G'B(1-P)+(1—P))Y + (P, ZP)A (5)
whereY is arbitrary andZ is only constrained by the requirement t#gtZ P, be symmetric.

Although the general solution appears to depend on the generalized invesgein fact
find:

Result 2. If G is any other solution of (3) with attendant projection operaters then
(5) may also be written

X=31G"BPL+G'B(1—P)+(1—P)Y + PJZPA
where
Y=(1-P)Y+P]ZP,A+ G B(1— 3Py Z=27+3G"BG - G"BG).

Thus Z is again symmetric and we have a solution of the form (5).

In the R-matrix context the matrixB is manifestly antisymmetric because of the
antisymmetry of the Poisson bracket and so (C1) is clearly satisfied. We have thus reduced
the existence of aR-matrix to the single consistency equation (C2) and the construction of
a generalized inverse to &d We turn now to the construction of the generalized inverse.

Let X, denote a Cartan-Weyl basis for the Lie algepraThat is{X,} = {H;, E.},
where {H;} is a basis for the Cartan subalgeliyaand {E,} is the set of step operators
(labelled by the root systerd of g). The structure constants are found from

[H;, E,] = o Es [E,E_J]=a" - H and
[Ea, Eﬁ] = Not,ﬁEoH—,B if o + ,3 € .
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Here N, g = cgjgﬂ. With these definitions we then have that
j B
l l .
adL = —~ 0  —BLF)_ (0 “ ) (6)
o — \ —o;L” A% voA

where we index the rows and columns first by the Cartan subalgebra{bgsidl . . . rankg}
then the root systema, 8 € ®}. We will use this block decomposition of matrices
throughout. Here: andv are |®| x rankg matrices and we have introduced thig x |®|
matrix

Af=a-L8§+ch gy l®F ©)
wherea - L = Y19 o; Li. With these definitions we have:

Result 3. For genericL the matrix A is invertible and a generalized inverse oflads

given by
1 0 0 0 1 —u'A 1l _ (0 0 ®)
A 1)\0 A1)\oO 1 —\0 A7)

We establish the result by first showing that for gendric

1 JTAT\ (0 O\( 1 0
adL:(o 1 ><o A)(Alv 1)' ©

It then follows that (8) is a generalized inverse forladly direct multiplication.
Now for any matricesn and A we have the general factorization [5, 10]

m o u' (1 u's m—u'Bv u'(l—EA) 1 0
v AJT\0 1 (1-AEB)W A Ev 1

where B is a generalized inverse @f. In particular, whenn = 0 andA is invertible (and
s0 E = A~Y) this shows that

0 u' 1 u'A? —u"A 0 1 0
(v A):<0 1 )( 0 A><A1v 1)' (10)

Thus (9) and hence the result follow by establishing thas generically invertible and that
u'A"v = 0. (11)
From (7) we see thad is the perturbation of a diagonal matrix and so is generically

invertible: the zero locus det = 0 is a polynomial in the coefficients of ddand so the
complement of this set is dense and open. For such an invettilvle thus have

rankA = dim A = dimg — rankg. (12)
Now the maximum rankof the matrix ad_ is dimg — rankg [17]. From (10) we see that
rankA + ranku"A~v) = rankadL < dimg — rankg and so from (12) we deduce that
rankA = rankadL. Therefore, rank:" A~'v) = 0 and consequently (11) must hold. The
result then follows.
An alternate factorization of afl is possible for the generi€ under consideration.
Utilizing (11) we find that

Ta-1
adL:(ujl\ )A(Alv 1) = EAF.

Employing a result of MacDuffee (see [5]) this full rank factorization then yields:

1 If det(r —adL) = Zj‘.‘i:ngg pj(L)t/ is the characteristic polynomial of dd the regular semi-simple elements

of a semi-simple Lie algebrg are those elements for whichankg (L) # 0. These elements are also of rank
dimg — rankg and form an open dense setgn but this condition is different from det # 0.
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Result 4. For genericL the Moore—Penrose inverse of Ads given by
Fi(F FOYy *A"Y(EV E)LET

where

Ta-1
E:(”jl\ > and F=(A% 1).

3. The R-matrix

We now bring together the results of the previous section to presenk-imatrix for a
genericL when this exists. From the fact that= —(adL)" a generalized inverse of is

given by minus the transpose of the generalized inverse (8). Utilizing our earlier notation
this means that we have the projectors

0 o 0 WTATT
Pl:(AlTu 1) P2=<0 1 )

Let us express the Poisson brackets of the entried @fi the same block form in the
Cartan—Weyl basis:

(¢ —-uT _ _ T
B_<M ¢)_ B

where B = {L*, L/} = p,; and so on. The constraint (C1) is manifestly satisfied.
The constraint (C2) is now (the ragkx< rankg matrix equation)

(C2) O=¢+u"A YU —u"A Y+ u" AT A0, (13)

Each term in this equation is known and so the equality may be readily checked.
Supposing the constraint (C2) is satisfied we then find from (5) that the getenalkrix
takes the form

R— 0 0 " p q
T\ ATt SATIA T AT —AYp—Fu —Alvg—FAT)"
(14)

The second term characterizes the ambiguitR iwhere we have parametrized the matrices
Y andZ in (5) by

Y:(p q) and Z=<a b).
ros c d
Here the matricep andg are arbitrary while the entries &f are such that

F=AYav' A" +d+ A vb+co'A™ 1T (15)

is symmetric.

4. Inclusion of spectral parameter

For simplicity we have presented our construction for Lax pairs with no spectral parameter
but it is straightforward to incorporate such a parameter. The relevant equation to be solved
for is now

{Lu) ® L)} =[R(u,v), L) ® 1] — [R™ (u, v), 1 ® L(v)] (16)
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where if R(u,v) = R*'(u,v)X, ® X, then R (u,v) is defined by R"(u,v) =
R (v, u)X, ® X,. Now

B"'(u,v) = {L"(w), L"(v)} = =B"" (v, u)

and becausd. (1) depends on: alone the generalized inverse now also depends on the
spectral parameter & = G(u). The equation we now wish to solve is

ATW)X (u,v) — X" (u, v)A(w) = AT()X (u, v) — X (v, u)A(v) = B(u, v)
and this has the analogous solution
X(u,v) = 3GTW)B(u, v)P1(v) + GT(w)B(u, v)(1 — P1(v)) + (L — P, W)Y (u, v)
+(P] () Z (u, v) P2(v)) A(v)
if and only if
(C1) B" = —B
(C2)  (1—P{W)B,v)(1— Pi(v)) =0.
Here Y (u, v) is arbitrary while the symmetry condition now becomes
(P (W) Z(u, v)Py(v))™ = P; (W) Z(u, v) Pa(v).
As in the spectral parameter independent case, this reduces to the requirement that
Fu,v) = A wv@)a@, v)v" ) AT () + d(u, v) + A" w)vw)b(u, v)
+eu, V)T WA () (17)
be such that™ = F.

5. An example

We conclude with the simple but illustrative example of the harmonic oscillator presented
as the Lax pair (with spectral parameter)

_( ipx/u (PP/w)+1 (0 i
L(u)_<(x2/u)+1 —ipx/u ) M(u)_(i 0)' (18)

The consistency of the Lax equatidnu) = [L(u), M (u)] follows from the equations of
motion of the Hamiltoniand = (p? 4+ x? 4+ u)/2 = —(u/2) detL(u).

Although we could equally work with the simple algebta2) in this example we will
take the algebra to bg/(2). Now for any! € gl(2),

| = (Ccl Z) =aH1+bE12+cEx+dH>

we find that in our Cartan—Weyl basis
0 0 —c b
0 O c —b
-b b a-d 0
c —c 0 d—a

(0 n) () ()

1 We user to denote both matrix transposition together with the interchangeawid v while T denotes ordinary
matrix transposition.

adl =

Then
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and! is generig provideda —d # 0. We note that in the Cartan—Weyl basis the permutation
operatorP =Y. H; ® H; + Y .o Ea ® E_, (Which is such thaP(X @ Y)P =Y ® X)
takes the form

p= (19)

[oNeNeN
[cNeN e}
= O OO
OoOr OO

Now for the case at hanbl= (p?/u) +1,c = (x*/u) +1,a = —d = ipx/u and L is
generic forpx # 0. We may, therefore, use the expressions computed in sections 3 and 4.
We calculate (usingp, x} = 1) that

0 0 —2ip?  2ix?
Blu.v) = 1 0 0 2ip?  —2ix? | _ 0 —uT(u, v)
T ww | 2ip2 =2ip® 0 Ay | @) $,v)

—2ix?>  2ix®>  —dxp 0
and straightforwardly verify that condition (Qds satisfied. TheR-matrix is then given by

R(u,v) = 0 0
T\ AT W, v) + AT WG VAT wuv) =AW (u, v)
N pu,v) q(u, v)
— A" v() p(u, v) — Fu, u) —A"w)v)qu, v) — Fu, v)ATw) )

The second term again characterizes the ambiguitR iand we have parametrized the
matricesY (u, v) and Z(u, v) in an analogous way to the spectral parameter independent
case of section 3. Substitution of the various quantities gives for the first term

0 0 0 O
0 0 0 O
2 2 i
Ru,v)=| —P tvo_ TPt 0 !
2pxv 2pxv v
—x%+v —x%+v i 0
2pxv 2pxv v

This R-matrix is clearly dynamical. Making use of the the block structure ofRhmatrix
we see that by choosing

p(u,v)z_Zi(é 2) q(u,v) =0 and F(u,v)z_u+v 1 <_Ol é)

u—v u—v2px

we arrive at the non-dynamical

—2i

R(u,v) = P

u—v
where P is given by (19).

6. Discussion

We have presented a uniform construction for a clasdsiecatatrix given a Lax pair, thus
answering the question of the Liouville integrability of the system in terms of the invariants
of the matrix L. The method not only gives necessary and sufficient conditions for the
R-matrix to exist and describes its ambiguities, but is algorithmic as well. Glyetfirst

1 Itis regular semi-simple provideth — d)? + bc # 0.
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construct ad.. Next construct any generalized inverse toladnd verify (C2); this is the
necessary and sufficient condition for &matrix to exist: it is given explicitly by (5).
Furthermore, we have given a generalized inverse for getieiic(8); genericity is easily
checked by evaluating dat # 0, whereA is the restriction of ad. to the root space (given
by (7)). The ambiguities in th&-matrix have been specified. We remark, that the block
nature of theR-matrix allows us to easily verify the putative ansatz for a givematrix.

Thus far our discussion has been limited to linamatrices and we briefly discuss the
application to quadratie-matrices, i.e. the solutions to

(LOLY=[r,LQL]=[ra, L QL] (20)

wherer, = (r—r")/2. (It follows from the antisymmetry of } that [+, LQL] = 0.) As
discussed in [4], the quadratiR-matrix calculation may be reduced to the ling&amatrix
situation. In particular thek-matrix

R=1r\"L"(X, ® X,X, + X, ® X;X,) (1)

that satisfies (1) yields a solutiory of (20); the general solution is then built from

and the centralizer of. ® L. Our theorem has given us the left-hand side of (21) and
a quadraticr-matrix is then given by solving the linear equatidt® = r\"F° where

F? = (FS + F7)L*/2 andX, X, = F} X,. Whereas the lineaR-matrix involves only
Lie algebraic data, the quadraticmatrix may involve the group structure through the
multiplication X, X, = F., X,. Nonetheless, the quadratiematrix has been reduced to a
linear equation amenable to direct solution.

Finally, we mention that for systems obtained by Hamiltonian reduction an alternative
geometric construction of classic&-matrices exists [2] in terms of Dirac brackets. This
suggests there is a correspondence between Dirac brackets and generalized inverses. This
is indeed the case and | will present this elsewhere.

This material was presented at the CRM ‘Workshop on Calogero-Moser-Sutherland Models’
(Montreal, March 1997) and | thank the organisers and participants for such a stimulating
meeting. | have benefited from comments by J Avan, J HarAad,W Hone, | Krichever,

V Kuznetsov, M Olshanetsky and E Sklyanin.
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